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• The task is to sort given databases, as quickly as possible.

• Firstly, The files to be used are in the format generated by 
gensort, where the first 10 bytes are key and the last 90 bytes 
the payload. 

• Next, sort the given input file and then write to output file. 
Sorting will be validated by valsort.

1. Task Overview
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2. Solution Overview

4. Large Set

5. Optimizations

In General

• All operations, including sorting, merging and so on, are 
executed as a task in the thread pool.

• Use Chunk Manager for pre-memory allocation and efficient 
memory usage. 

• Use Direct I/O for bypassing the operation system read caches.

• Use byte comparison instead of bit.

In Small & Medium

• Adjust each partition to L3 cache size because of quick sort’s 
performance.

• (Unreleased) Apply prefecth to pre-allocate kernel cache buffer 
for writing.

In Large

• Use multi-way(15) merge for efficiency.

• Use tournament tree instead of heap in merge task for 
performance.

• While a partition is written to disk, the next partition file is read 
simultaneously for using full I/O bandwidth.

• Sorting is processed by following order

1. Read a partition from disk to memory.

2. Order a partition by quick sort and merge sort.
Write to disk when it’s done. 

3. Repeat 1-2 until every partitions is sorted.

• Sorting is processed by following order

1. Make independent partitions based on the leftmost 15 bits of key.

2. Sort each partition by quick sort and write to output file. 

3. Small & Medium Set

• Partitioning is processed by following order

1. Sample 4G of the input file with 100MB chunk.

2. Make a histogram based on the leftmost 3 bytes of sampling keys.

3. Using histogram accumulation, find the partition points.

4. Make independent partitions using partition points.
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