
RESEARCH POSTER
PRESENTATION DESIGN © 2015

www.PosterPres
entations.com

• The task is to sort given databases, as quickly as possible.

• Firstly, The files to be used are in the format generated by
gensort, where the first 10 bytes are key and the last 90 bytes
the payload.

• Next, sort the given input file and then write to output file.
Sorting will be validated by valsort.

1. Task Overview

{hyunsoocho, kihwangkim, jaeseonyu}@hanyang.ac.kr
{hyungsoo.jung}@hanyang.ac.kr

Team: PaperCup

Hyunsoo Cho, Kihwang Kim, Jaeseon Yu

Hyungsoo Jung(Advisor)

ACM SIGMOD Programming Contest 2019

2. Solution Overview

4. Large Set

5. Optimizations

In General

• All operations, including sorting, merging and so on, are
executed as a task in the thread pool.

• Use Chunk Manager for pre-memory allocation and efficient
memory usage.

• Use Direct I/O for bypassing the operation system read caches.

• Use byte comparison instead of bit.

In Small & Medium

• Adjust each partition to L3 cache size because of quick sort’s
performance.

• (Unreleased) Apply prefecth to pre-allocate kernel cache buffer
for writing.

In Large

• Use multi-way(15) merge for efficiency.

• Use tournament tree instead of heap in merge task for
performance.

• While a partition is written to disk, the next partition file is read
simultaneously for using full I/O bandwidth.

• Sorting is processed by following order

1. Read a partition from disk to memory.

2. Order a partition by quick sort and merge sort.
Write to disk when it’s done.

3. Repeat 1-2 until every partitions is sorted.

• Sorting is processed by following order

1. Make independent partitions based on the leftmost 15 bits of key.

2. Sort each partition by quick sort and write to output file.

3. Small & Medium Set

• Partitioning is processed by following order

1. Sample 4G of the input file with 100MB chunk.

2. Make a histogram based on the leftmost 3 bytes of sampling keys.

3. Using histogram accumulation, find the partition points.

4. Make independent partitions using partition points.

Input file

In-memory partition Disk partition

Make partition using partition point

Small chunk
qsort & merge

Write to output file Output file
repeat

Make histogram

Partition
point

Input file

03, 06, 01

16, 12, 13

21, 28, 29

34, 32, 37

Partitioning Sorting

.

.

.

Input file Output file

01, 03, 06

12, 13, 16

21, 28, 29

32, 34, 37

.

.

.

Output file

In-memory partition Disk partition

After last merge,
flush it sequentially.

If flush is done over 75%,
start overlapping

Memory

Small & Medium Set Large Set

Partition with sequential read

Sort each partition

Flush sorted partitions
independently

Make histogram using sampling

Make independent in-memory /
on-disk partitions using histogram

Sort each partition by
sort-merge process

